离心式压缩机防喘振 离心式压缩机的喘振原因及预防

2017-06-19

离心式压缩机的喘振原因及预防 田立华 (中石油前郭石化分公司) 摘 要 离心式压缩机发生喘振时,转子及定子元件经受交变的动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

因此,离心式压缩机严禁在喘振区域内运行。本文针对喘振的原因和预防措施做了详细论述。 关键词 离心式压缩机 喘振 喘振点 性能曲线 旋转脱离 一、喘振机理 喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

当外界条件适合内在因素时,便发生喘振。 2.喘振与管网的关系 离心压缩机的喘振是其本身的固有特性。

压缩机是否在喘振工况点附近运行,这主要取决于管网的特性曲线P=Pa AQ2。图2为离心压缩机和管网联合工作性能曲线。交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管**性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

相反闸阀开大时,管道中的阻力系数A减小,管**性曲线1右移,压缩机流量达到Qmax时,出现滞止工况。

最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。 3.喘振的产生 从图2可以看出:由于管网阻力的增加,管**性曲线左移,致使压缩机工况点向小流量偏移。压缩机的流量Qj 减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈的脉动。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

发生旋转脱离时在叶轮的凹面形成涡流区,当流量减小到Qmin时,上述的正冲角i 增加得更大,涡流区扩大到整个叶片流道,气流受到阻塞,压缩机出口压力突然下降,而管网中气体压力并不同时下降,这时,管网中压力P1大于压缩机出口压力P2,因而管网中气体倒流向压缩机,直至管网中压力下降到低于压缩机出口压力时才停止倒流。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

这时压缩机又开始向管网压送气体,使管网中的气体压力再次升高至P1时,压缩机的流量Qj减少到Qmin,出口压力突然降到P2,P1>P2后,管网中气体又倒流向压缩机。如此周而复始地进行,压缩机时而有气流输出,时而有气体由管路倒灌入机器,产生周期性气流脉动,出现喘振。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

喘振过程中参数变化的频率和幅度的大小与管网容量有很大的关系。管网的容量相当于整个系统的基本谐振器。管网的容量愈大,喘振的频率愈低,振幅愈大;管网的容量愈小,喘振的频率则愈高,振幅愈小。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

由此可知,发生喘振的根本原因就是低流量,在操作中造成低流量的因素很多,归纳为以下几个方面: (1)压缩机出口压力升高,系统压力大于出口压力,使气体流量降到喘振流量。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

稳定系统压力高,造成压缩机出口憋压,气体倒流入压缩机,造成机内气体低流量。 (2)入口流量低于规定值,反飞动调节阀失灵。在一定转数和一定气体密度下,能维持一定压力,当开、停机时气体流量少,或者放火炬阀开得过大,最容易引起压缩机入口流量低。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

(3)气体密度变化,在一定转数下,离心力下降,引起出口压力及排量下降,通常误认为是抽空现象。 (4)分馏系统操作不稳致使压缩机入口气体带油(例如瓦斯罐液位、界位失灵),液体组分进入机体。

离心式压缩机防喘振 离心式压缩机的喘振原因及预防

(5)汽轮机的蒸汽压力低或质量差(温度低),机组出现满负荷,转速下降。 (6)调速系统失灵,辅助系统故障,真空效率下降,机组不能额定做功。

二、离心压缩机性能曲线的分析 Pc 3 η=φ(Qj) N 1 P=Pa AQ2 Pcm 4 M N’ 2 Pc=f (Qj) Pa Qmin Qjm Qmax Qj 图2离心压缩机和管网联合工作性能曲线 1.

管**性曲线 2. 压缩机性能曲线 3.效率曲线 1、P=Pa AQ2 管**性曲线的特点(见图2线1)。 A.关小管网中的闸阀开度,阻力系数A增大,曲线向左移动,当移动至4的位置,与压缩机性能曲线2交于N点,压缩机出现“喘振”的不稳定现象。

B.开大闸阀开度,阻力系数A减小,曲线向右移动与压缩机性能曲线2交于N’点,压缩机在N’点稳定工作。 2、Pc(或ε)=f (Qj) 压力-流量曲线的特点(见图2线2) A.

Pc(或ε)随Qj的增加而降低。Qj=Qjm时,冲击、分离损失最小,此时压缩机工作最稳定,效率最高,是设计工况点M。 B.Qj≤Qmin时,当流量达到Qmin时离心压缩机发生喘振现象,压缩机严禁在喘振点N运行。

Qmin为喘振流量,也叫最小流量。不同转速下的Pc=f (Qj)曲线都有一喘振工况点,各喘振点的连接曲线就是该压缩机喘振边界线,离心压缩机不允许在喘振边界线的左侧工作。

C.Qj≥Qmax时,离心压缩机发生滞止现象。Qmax为滞止流量,也叫最大流量。滞止工况就是当压缩机流量达到Qmax时,叶轮或叶片扩压器最小截面处的气流速度达到音速,此时流量再也不能增加;或者气流速度虽未达到音速,但叶轮对气体做的功全部用来克服流动损失,气体压力并不升高。

D.喘振流量Qmin与滞止流量Qmax之间即为离心压缩机的稳定工况范围。用比值KQ=Qmax/Qmin表示;或者以比值KQ′=(Qmax-Qmin)/ Qjm表示。

比值KQ 、KQ′越大,压缩机的稳定工况范围越宽。衡量离心压缩机的性能好坏,不仅要求在设计流量下应有最高的效率,而且要求稳定工况范围要宽。 3、η=φ(Qj)效率-流量曲线的特点(见图2线3) A.

Qj=Qjm(设计流量)时,冲击、分离损失最小,故效率η最高。该工况点为设计工况点。又称最佳工况点。 B.Qj>Qjm时,随着Qj的增加,冲击、分离损失与摩擦损失增加的很快,使效率下降的很快,故这段η=φ(Qj)曲线较陡。 C.QjQjm或Qj<>